

Operational Improvements / Fuel and emissions savings ICAO EUR ENV TF/2

David Brain
EUROCONTROL
17th October 2023


The Challenge Ahead for Sustainable Growth

2050
IFR Movements

16 million flights
ECAC

+44%
vs. 2019

©EUROCONTROL - www.eurocontrol.int/forecasting

Excess fuel burn in the network (intra-NM flights)

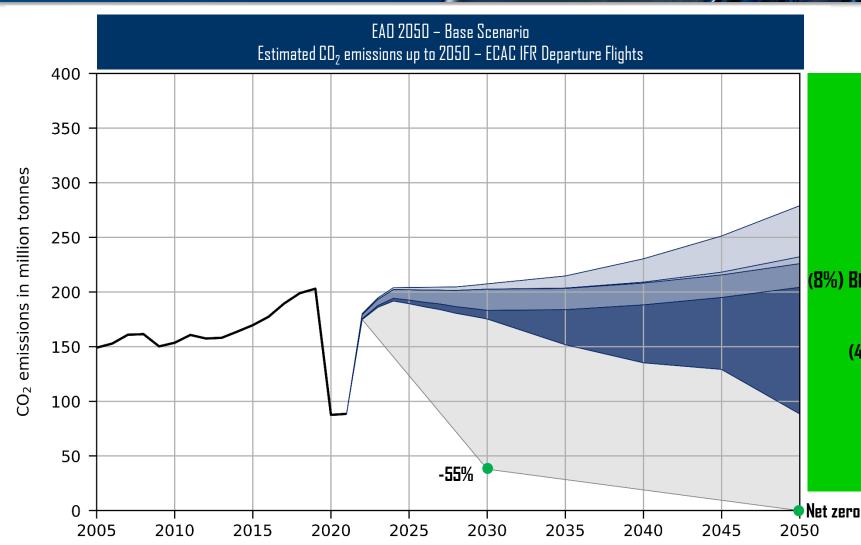
Excess fuel burn

2019

10th percentile: 8.6% 5th percentile: 11.2%

2020

10th percentile: 3.5%


2023

YTD: 9.6% (10th perc.)

2050 – (CO2 emissions forecast results – base scenario)

NET ZERO CO₂ to be achieved by CUTTING 279 million tonnes with:

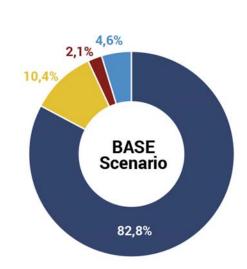
(17%) MORE EFFICIENT CONVENTIONAL AIRCRAFT
(2%) ELECTRIC & HYDROVEN POWERED AIRCRAFT
(8%) BETTER AIR TRAFFIC MANAGEMENT & OPERATIONS

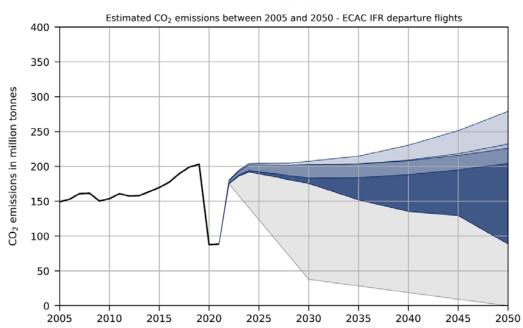
(41%) SUSTAINABLE AVIATION FUEL

(32%) OTHER MEASURES (MBM, CARBON CAPTURE)

ATM contribution by 2030 - Objective Skygreen

• EU proposing an intermediate target of a 55% CO₂ reduction by 2030 compared to 1990 levels.


ATM improvements

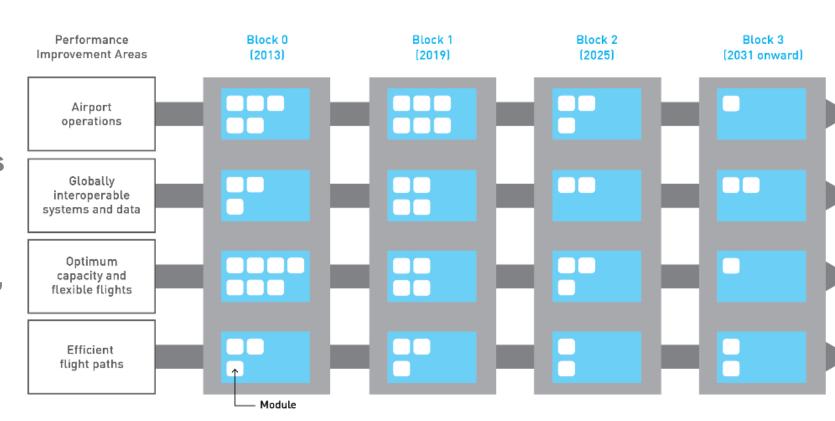

Fleet upgrades

SAF

MBM (ETS + CORSIA)

EAO 2050 - Base scenario

Reference - https://www.eurocontrol.int/publication/objective-skygreen-2022-2030

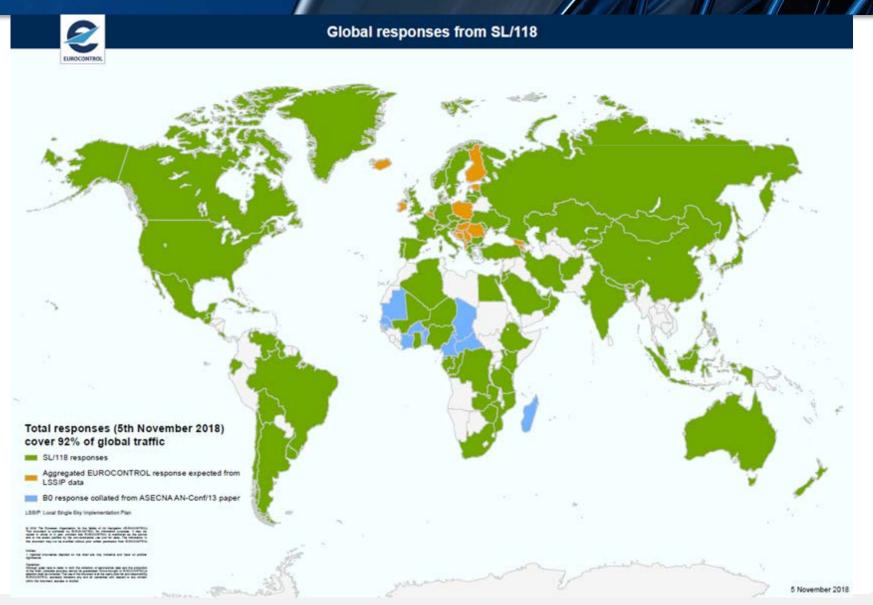

2019 — ICAO Global ASBU environmental benefits analysis

ICAO initiated the Aviation System Block Upgrade (ASBU) initiative as a programmatic framework that:

- Develops a set of Air Traffic Management (ATM) solutions or upgrades
- Takes advantage of current equipage
- Establishes a transition plan, and
- Enables global interoperability

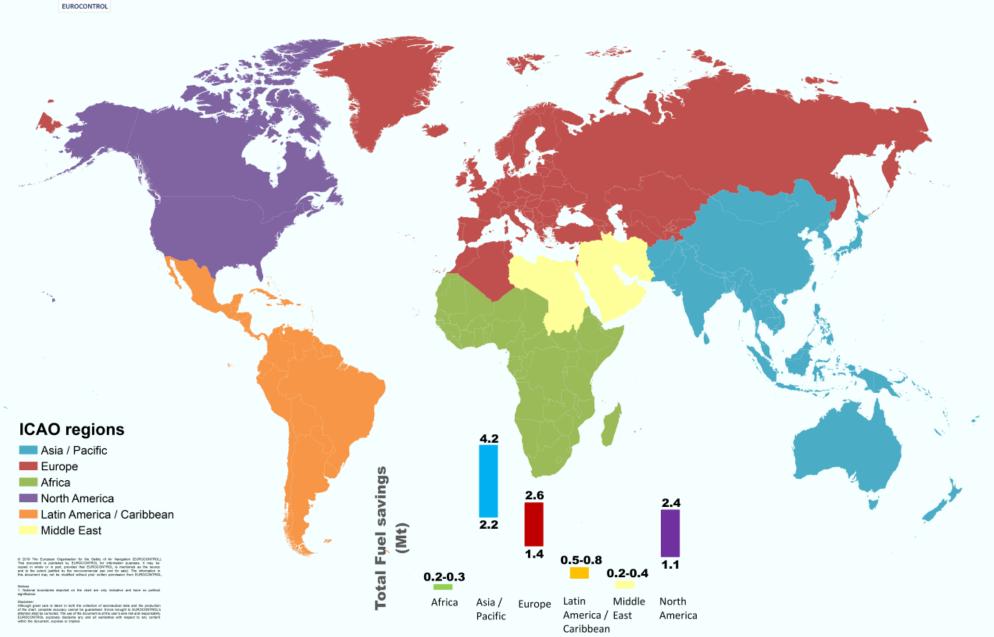
Outlined in ICAO Global Air Navigation Plan (Doc. 9750)

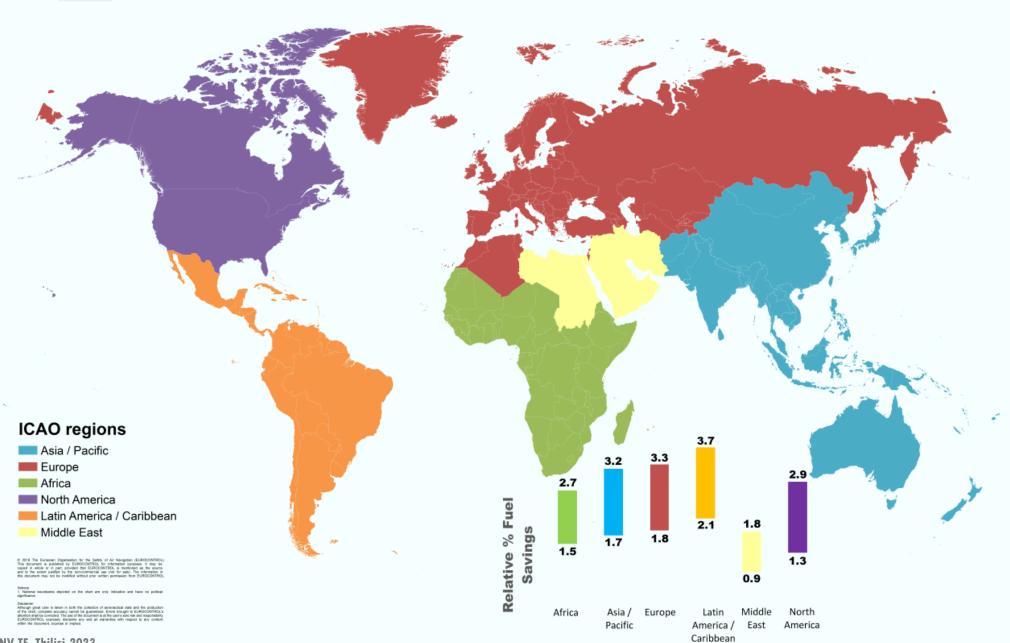
ASBU analysis — ENV benefits rules of thumb

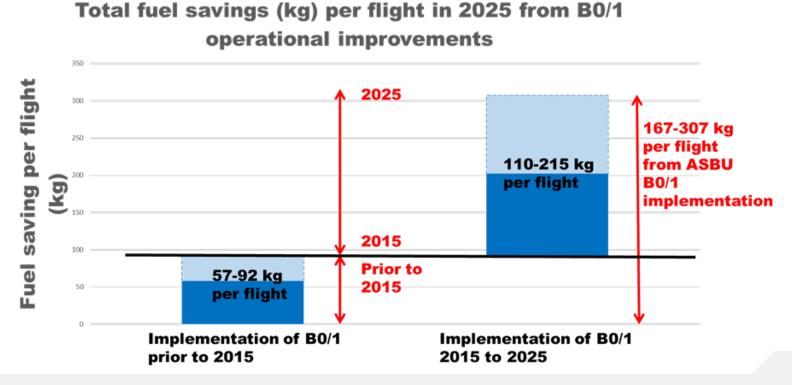


53 rules of thumb (RoT) were developed for ASBU B0 / B1 generic implementations

	AC Class		Sav	gh Av	r taxi	S	aved p	ve Kg per taxi	Fleet %	Fig 3	he AIAA and Mitre pa laseline arrivals/hr ussume 80% ADS-8 OL and 20% ADS-8 In FIM tule of Thumb burnway Arrival Rate	S 25 So given	realistic example of gain 1 arrival/hr	on 20% FIM-5 capa Likely requires		page		SA	AC Cla	1	ve Kg S er fligh 21,	t	Flee	lified et %	
			mi	n Taxi	-out	r	nin Ta	xi-in**			Assume 80/20 Equipag Additional arrivals	e 23 25 1 1	28 31 2 3	34	5	_		Sr	mall TA	<u> </u>	89,	3	13	3,4	'
	RJ			7			4	.9	6,0		ime saving - min/airp econds saved per A/C		9.9 12.4		5.2	RJ	900- 1220	4030	1832	30,53	0,509	1832	31	0,51	6
	SA			14,4			10).1	71,0	High	uel benefit B737/A32 uel benefit B737/A32 uel benefit B777/A35	7.6 6.4	8.4 10.6 10.5 13.3 36.4 45.8	15.0 1	3.0 6.2 6.0	SA	900- 1220	5815	2643	44,05	0,734				
.4	Small TA			20,5		\top	14	1,4	12,9		uel benefit B777/A35 uel benefit B747/A38	31.3 26.4	39.8 50.1 43.6 54.8	62.2 6	1.2 7.0	SA	1900 4000-	5357	2435	40,58	0,676	2460	41,0	0,68	71
2										High	uel benefit B747/A38				5.7	SA	5500	5060	2300	38,33	0,639				
3	Med TA			34		+		3,8	8,8		uel benefit 8737/A32 uel benefit 8737/A32		3.8 4.8 4.8 6.0	5.5	i.9 !.4	Small WB-1 B57/67-A33/34	900- 1220	8580	3900	65,00	1,083				
5 6 7	Large TA	4,0%		70			4	9	1,3 Class	~ kg/sec	ue		Low kg/de			Small WB-1 B57/67-A33/34	1900	7883	3583	59,72	0,995	4009	66,8	1,11	12
9 10 11	Americas India/Southwest Asia Composite 11 Europe India/Southwest Asia Europe Other Asia/Pacific 9	0 1,2% 5 2,2% 8 2,2%	103 60%	17,2		2 387 288		64.348 73.122	RJ SA	0,54gh	2,2 2,9	4,8 6,4	7,1 9,4	16,4 21,9		Small WB-2 B57/67/87-A33/34	4000-	9995	4543	75,72	1,262				
13 14 15 16	Europe Africa 41 Europe Middle East 27 North America South America 86 North America Central America and Caril 53	18 1.5% 75 1,8% 9 2,0%	472 60% 317 60% 105 60% 595 60%	62 177 Haligh 63 2.59 357 1.08	2 40% 2 10% 9 10% 9 10%	613 52 183 0 260 5 109 0		64.348 73.122) W ₀ 0 0 0 0 0 0 0	Small TA Med TA	1,11 1,57	4,8 6.8	10,5 14.9	15,4 21,7	35,7 50,5		Medium WB B777-A340/350	4000- 5500	11865	5393	89,88	1,498				
17 18 19 20 21	Middle East China/Mongolia 28 Middle East India/Southwest Asia 20 Middle East Other Asia/Pacific 51 Intra Africa 27 Intra Asia/Pacific 111	5 2.3% 96 2.2% 3 2.2% 10 1.9% 32 2.1%	30 60% 245 60% 63 60% 313 20% 1338	18 3.35 147 1.39 38 3.71 63 733 0 1.12	6 70%	1.676 193 279 7 2.601 317 566 48 0 0	2 696 0 0 2 1140 0 0 0 0	12.590 14.307 0 0 43.251 49.149 0 0 0 0	Large TA	2,47	10,7	23,4	34,2	79,4		Medium WB B777-A340/350	9000- 14000	12960	5891	98,18	1,636	5642	94,0	1,57	8
22 23 24 25	Intra Latin America 40 Intra Middle East 28 Intra North America 40	70 1,4% 97 1,9% 94 1,7% 93 0,7%	4876 475 326 426	0 631 0 622 0 500 0 673		0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	Composite	0,829	uel Sav		s) per F	liaht fi		Large WB 747/A380	4000- 5500	17279	7854	130,90	2,182	8887	148,1	2,47	
26 27 28 Dos 29	TOTAL INTERNATIONAL 974 n Africa 49 China/Mongolia 226	0 1,6% 60 2,5%	456 11054 555 2759 3255 60%	0 1.27 1988 0 300 0 588		0 0	0 0	810.432 920.946 0 0				g Enable				Large M/R	9000- 14000	21824	9920	165,33	2,756	0007	140,1	2,47	
31 32	Latin America 186	22 0.9% 61 1.7% 13 1.3%	2122 293 9609 96%	1.953 319 0 385 0 354 9.225 579		0 0	0	7.470 8.488 0 0 0 0 6.406 7.280			Aircraft Class >>> Range:			>	Savings (kgs)						Distance		49,8	0,829	1
34 35 36	Japan 65 Other Asia/Pacific 205		683 2343 860	0 372 0 354 0 374		0 0	0	0 0		Ran											Savings (NM)		1)		ļ
37 38 39		1.2%	22478 1178 13.876 15.68 33532 13166 704 824.308 836.714				RoT low				11-95						1-5								
40 41 42	40 Assumption Base Low High 42 Fuel efficiency gain 1,5% 1,0% 2,0% 43 Base Fuel burn kg/min 120 90 150								RoT high				40-187					17-27							
43 44 45	Base Fuel burn kg/min	120	90 150			60 150 375	2																		


ASBU analysis — State Letter response from SL118





2019 — ICAO Global ASBU environmental benefits analysis

- ASBU B0 / B1 modules implemented <u>prior to 2015</u>: 57-92kg fuel per flight (180-289 kg CO₂)
- The implementation of ASBU is estimated to provide a total annual global fuel savings in 2025 of between 167-307kg per flight (528-970kg CO₂)

ASBU analysis — key findings in Europe

4 ASBU modules (CDO, ASUR, TBO and CCO) provide close to

60% of the higher range of fuel and CO₂ savings;

CDO – Continuous Descent Operations

ASUR – Space-based ADS-B surveillance

TBO – Trajectory-Based Operations

CCO – Continuous Climb Operations

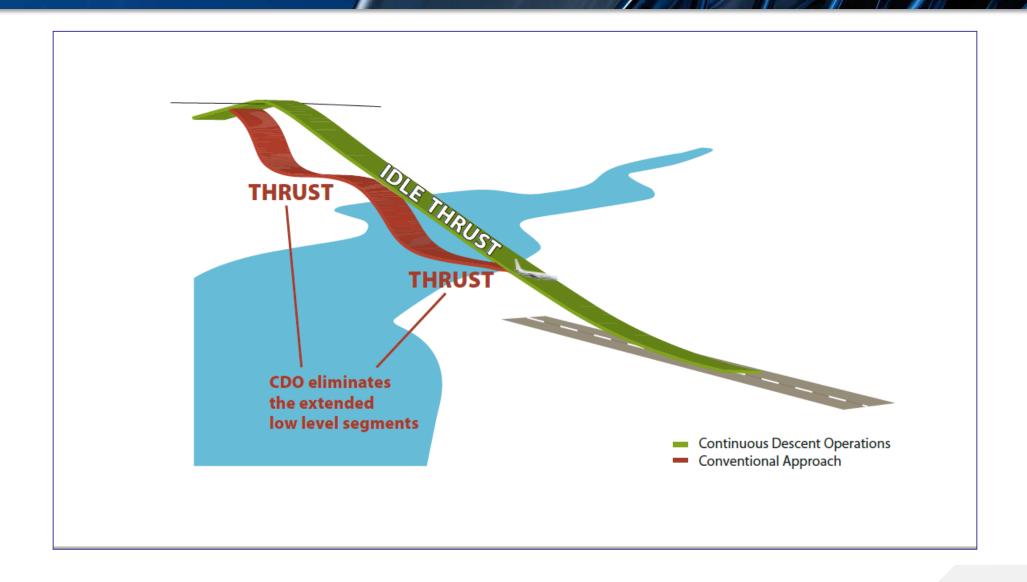
ASBU analysis — key findings in Europe

A further 6 ASBU modules (RSEQ, ACDM, APTA, FRTO, AMET and NOPS) provide an additional 37% of savings;

RSEQ - Runway sequencing (AMAN / DMAN)

ACDM – Airport Collaborative Decision Making

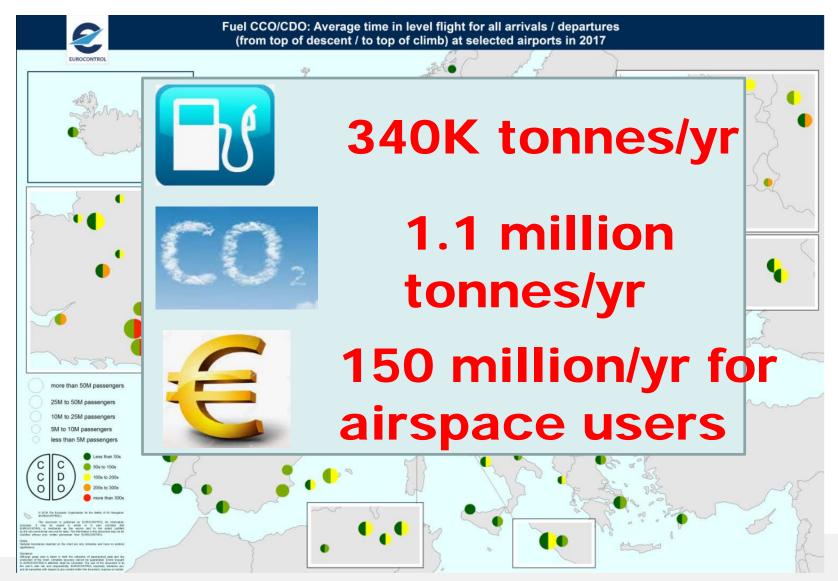
APTA – Performance Based Navigation


FRTO – Free Route Airspace / FUA

AMET - enhanced MET information

NOPS – Air Traffic Flow Management

CDO — the concept



Average time in level flight for all arrs / deps in 2017

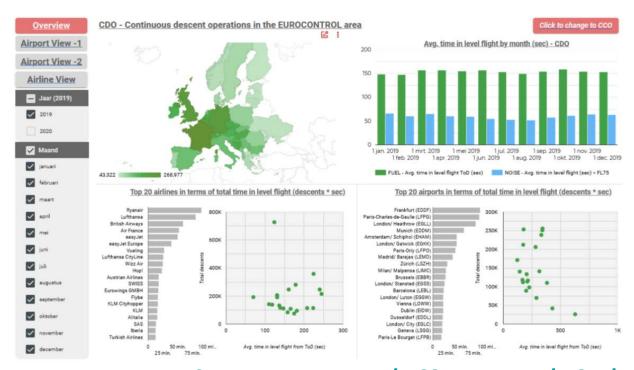
European CCO / CDO TF

European CCO / CDO Taskforce

		CF	

A.	CCO / CDO EXECUTION – LIST OF IDENTIFIED CONTRIBUTORY FACTORS	33					
В.	HARMONISED METRICS FOR CCO / CDO MEASUREMENT	63					
c.	CCO / CDO MONITORING AND FEEDBACK ON PERFORMANCE	67					
D.	NOISE OPTIMISATION	73					
E.	AIP PUBLICATION	77					
F.	AIRSPACE / PROCEDURE DESIGN						
G.	LoA / RAD	95					
H.	CCO / CDO FACILITATION H.1 Facilitate Track Miles (Distance to Go (DTG)) H.2 Speed and Energy Management H.3 Horizontal versus Vertical CCO / CDO Facilitation	99 100 103 106					
ı.	TRAINING FOR ATCOs	115					
J.	AIRLINE STANDARD OPERATIONAL PROCEDURES AND GOOD PRACTICE MATERIAL	119					
K.	FLIGHT CREW TRAINING K.1 General Principles K.2 Initial Training K.3 Recurrent Training	125 125 126 128					
L.	AIRLINE PERFORMANCE MONITORING AND FLIGHT CREW FEEDBACK	133					
M.	PHRASEOLOGY	143					
N.	COLLABORATION	147					
О.	FUTURE DEVELOPMENTS	151					
P.	TOOL KIT FOR IMPLEMENTING AND OPTIMISING CCO / CDO	169					
Q.	CASE STUDIES	173					

https://www.eurocontrol.int/concept/continuous-climb-and-descent-operations#action-plan


European CCO / CDO Taskforce

Deliverables (2) - CCO / CDO performance dashboard

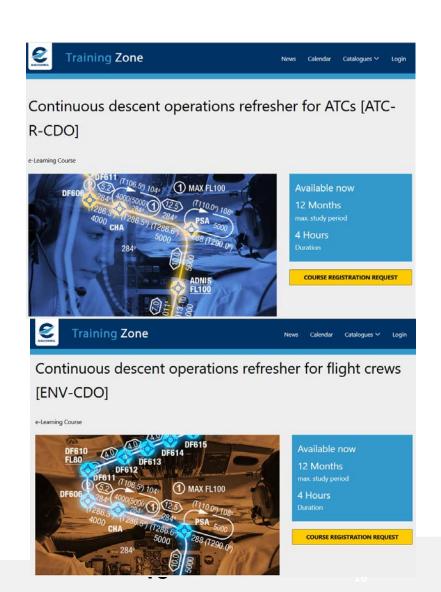
- All airports in Europe*
- All airlines flying in Europe*

* Subject to data availability - https://www.ansperformance.eu/efficiency/vfe/

European CCO / CDO Taskforce

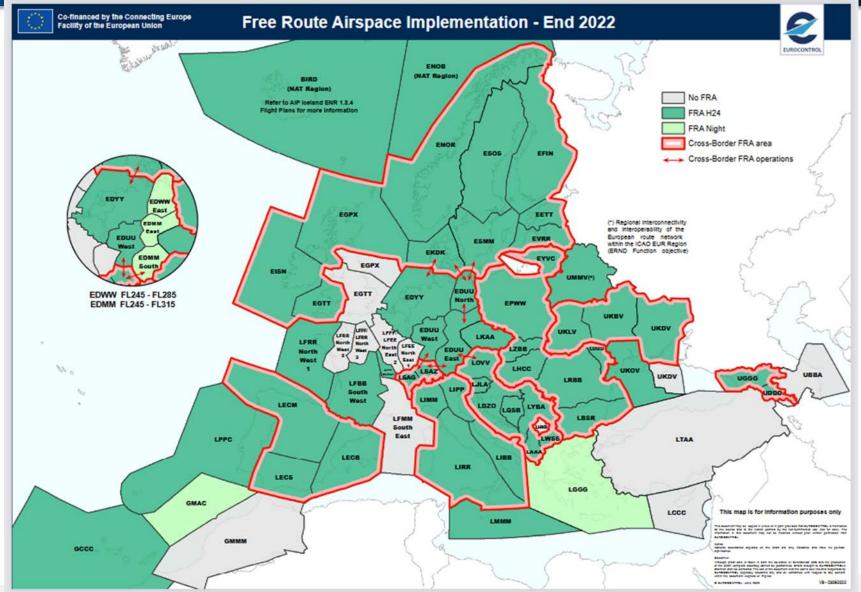
Deliverable (3) - CCO / CDO Tool Kit

 https://www.eurocontrol.int/concept/continuous-climb-anddescent-operations


Deliverable (4) - ATCO refresher training on aircraft energy management

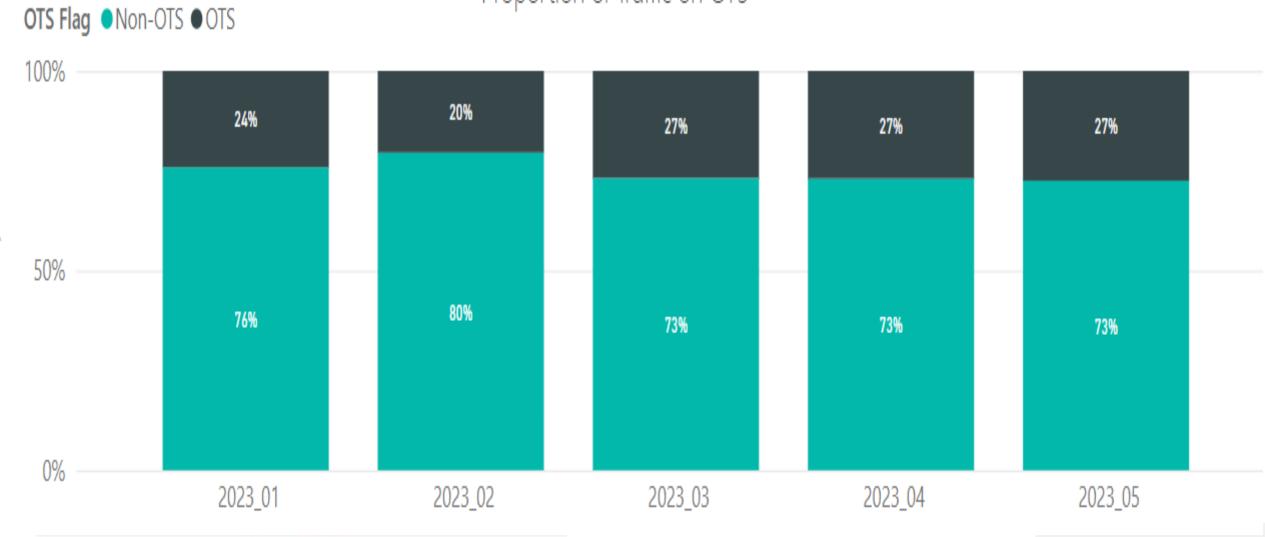
https://trainingzone.eurocontrol.int/ilp/pages/coursedescription.jsf? courseId=8619678&catalogId=232380

Deliverable (5) - Flight Crew CBT on CCO / CDO


https://trainingzone.eurocontrol.int/ilp/pages/coursedescription.jsf? courseId=9178064&catalogId=896425

Reference -

Free Route Airspace - Europe



North Atlantic Tracks UPRs

Airport Collaborative Decision Making / A-CDM

THE MANUAL

Airport CDM Implementation

Boosting Flight Efficiency: ADS-CEPP

ADS-C EPP operational @ MUAC

Showcase flight efficiency benefits

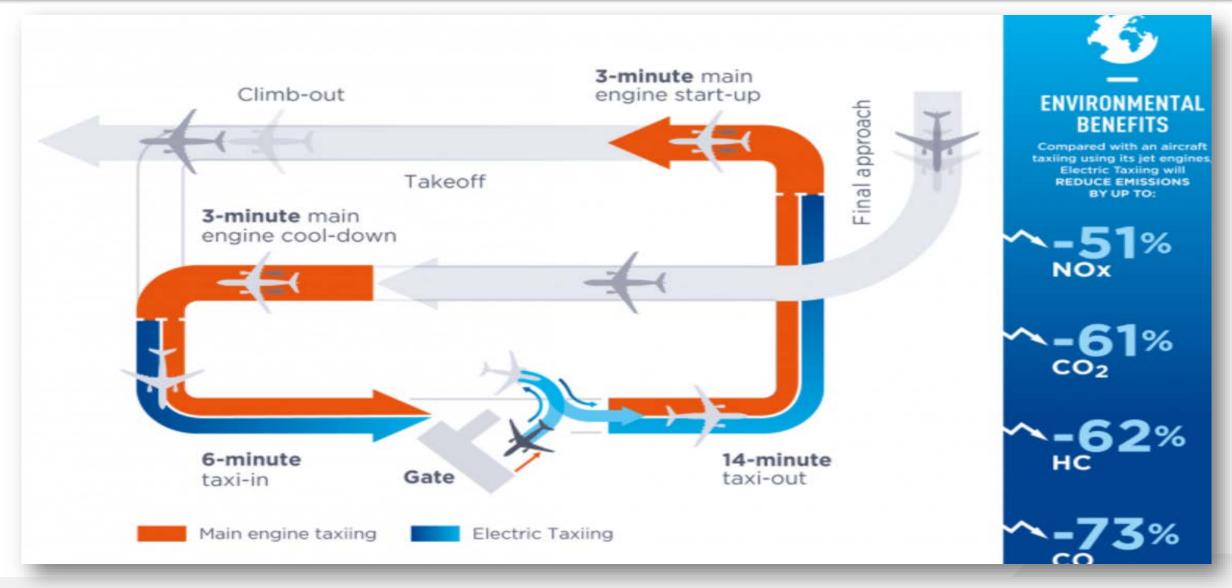

1. ADS-C can identify whether a flight can exit a non-active military area before it becomes active —> shortest route

2. ToC display — earlier direct routing – earlier clearance to RFL – CCO: 12-35 kg of fuel savings / flt

3. ToD & optimum descent profile display

more miles at cruising level –

optimum descent – CDO: 10-24 kg of fuel savings / flt


Next steps - removing emissions e.g. Formation flying

Next steps – removing emissions e.g. e-Taxi solutions

New challenges - AZEA

Green electricity/hydrogen supply

Aerodromes

Aviation regulation, certification and standards

Integration into the European network

Incentives

New challenges - AZEA

** ICAO ENV TF, Tbilisi 2023 2023 2023

Performance measurement is vital

CRITICAL REVIEW OF ATM/ANS ENVIRONMENTAL PERFORMANCE MEASUREMENTS

ATM/ANS Environmental Transparency Working Group

Pillar 1 - Final Report

CAEP-SG/20232-IP/04 English only

COMMITTEE ON AVIATION ENVIRONMENTAL PROTECTION (CAEP)

STEERING GROUP MEETING

Takamatsu, Japan, 16 to 20 October 2023

Agenda Item 2: Developments since the 2022 Steering Group Meeting

UPDATE OF THE ENVIRONMENT KEY PERFORMANCE AREA IN THE GLOBAL AIR NAVIGATION PLAN

(Presented by the ICAO Secretariat)

INTRODUCTION

Since the endorsement of the sixth edition of the GANP during the 40th session of the ICAO Assembly, the GANP is presented in an electronic format available at Home - ICAO GANP Portal and its content is organized into four levels: two global levels (strategic and technical), a regional level and a national one. The 41st session of the ICAO Assembly endorsed the seventh edition of the Global Air Navigation Plan. The Global Air Navigation Plan is performance-driven and service oriented.

PERFORMANCE IN THE GAND

- The Global Air Navigation Plan (GANP) contains, the GANP performance framework, composed of a series of performance ambitions, focus areas, performance objectives and key performance indicators (KPIs) within the eleven key performance areas (KPAs) 1 matching the global performance expectations outlined in the Global Air Traffic Management Operational Concept (Doc 9854).
- The Performance Ambitions, contained in the global strategic level of the GANP, are qualitative statements, defined in the eleven ICAO KPAs, whose goal is to provide global priorities on the performance evolution of the global air navigation system. The performance ambitions should not be regarded as targets to continuously monitor and report performance against, but rather as a catalyst for

Note - More information on the GANP Performance Ambitions is available at: https://www4.icao.int/ganpportal/GanpDocument#/lessons/mjR-NvTw42AWIAraUwLYarOFkoUGNX h? k=h8rv8

(4 pages) CAEPSG.20232.IP.004.2.en.docx

¹ The eleven ICAO KPAs: safety, security, environmental impact, cost effectiveness, capacity, flight efficiency, flexibility, predictability, access and equity, participation by the ATM community and global interoperability.

Collaboration and partnership to deliver the pool of benefits

SUPPORTING EUROPEAN AVIATION

